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Density functional theory for spherical drops 
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zognfos GR 157 84, Athens, Greece 

Received 3 December 1993. in final form 8 April 1994 

Abstract. We have applied Sullivan’s model to sNdy the interfacial properties of a spherical 
drop embedded in a one-component fluid using the mean field approximation. We have examined 
the effect of drop size (expressed by the equimolar d i n s  Re) on the density profile, pressure 
tensor, pressure difference Ap across the interface. surface tension, Tolman’s length, and density, 
pressore, and normal component of pressure tensor at h e  cenve of the dmp. Ap is found to be 
an ill defined quantity in the sense that it can be defined in various ways, whose results coincide 
for large drops. The surface tension is a non-monotonic function of Re; it increases slowly 
from its flat interface value as Q decreases until a maximum value is attained, then it decreases 
rapidly. For small supersnturations, the drops ae under tension and compression while at large 
supwwhlrations lhey are only undm tension. ?he results of this theory are compared qualiratively 
with previous molecular dynamics simularions and theoretical calculations for drops. 

1. Introduction 

The statistical mechanics of curved interfaces, mainly spherical and cylindrical, is equally 
important as (if not more important than) that of planar interfaces, but it needs a more subtle 
analysis than the flat geometry wherein much progress has been achieved in understanding 
its statistical mechanical properties [l-31; although the theory of curved interfaces was 
founded on sound thermodynamic arguments, late in the 1940s [1 ,4,27] ,  it has received 
Little attention. Non-plan= interfaces are involved in many circumstances, e.g. oil recovery, 
homogeneous nucleation, pollution technology, etc, thus a detailed understanding of the 
curvature dependence of the interfacial properties of curved interfaces (which are still not 
satisfactorily understood) is important. Here we examine spherical fluid interfaces embedded 
in a one-component vapour background. 

The early studies of the influence of curvature on the properties of drops date back 
to Young and Laplace in the nineteenth century. Laplace considered a drop of radius R 
enclosing a homogeneous liquid-like phase (interior phase) separated from a homogeneous 
bulk vapour phase (exterior phase) by a mathematical dividing surface where the density 
changes abruptly from its constant value inside the drop to its constant value outside; the 
drop, to be stable against the surface tension y (regarded as a mechanical force) of the 
vapour-liquid interface, must set up a pressure difference A p  over the interface to balance 
the contracting force and maintain the system in equilibrium; the condition of mechanical 
equilibrium, called the Laplace law, is 

A p = 2 y f R  ( 1 . 1 )  

where A p  = p I  - pv is the pressure difference between the pressure P I  of the interior phase 
and pv the pressure of the exterior; these pressures can be identified as ‘bulk‘ pressures in 
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the centre of the drop and far outside the drop, since the drop is considered to be large so 
that the interior phase is homogeneous (constant interior density el). However, the exact 
numerical value of y is not specified, but y is considered to be equal asymptotically to its 
planar value ym as the drop grows. 

Gibbs was the first to treat the spherical liquid interface on the basis of thermodynamics 
regarding this inhomogeneous system as consisting of a homogeneous interior phase (bulk- 
like liquid) separated from the exterior bulk vapour phase by an arbitrary mathematical 
spherical dividing surface possessing a radius-dependent tension y ( R )  and an excess mass 
density rs [1,4]. Gibbs introduced the notion of the surface of tension (with radius R. and 
associated surface tension yI = y(R,)) such that the Laplace equation retains its form, i.e., 

A P  = 2~ (Rs)/% (1.2) 

and for which the curvature coefficient C ( R )  vanishes (C(R) = A[dy/dR]; A is the area 
of the dividing surface with radius R and associated surface tension y ;  the brackets denote 
changes following from a notional change in the position of the dividing surface and not a 
physical change in the state of the system). Another dividing surface, introduced by Gibbs, 
is the so-called equimolar dividing surface with radius Re and associated surface tension 
ye; this choice makes the excess surface density r, vanish. We further introduce another 
surface at r = R,, where the absolute value of the first derivative of the number density 
e(r)  with respect to the distance r from the origin of the drop becomes maximum; the 
associated surface tension is y,-. In any case, the dividing surfaces are introduced solely 
for computational convenience and the values of the observable quantities such as R, PI, 
pv ,  and p (chemical potential) must be independent of the particular choice (for fixed N, 
V and T), while the value of the surface tension depends on the choice of the dividing 
surface. 

Tolman, on thermodynamics grounds, extended Gibbs theory to obtain the radius 
dependence of surface tension 141 

that is 

Tolman introduced the new parameter 6 (known as Tolman's length) 

where z. and zs are the equimolar and surface of tension dividing surfaces for the flat 
interface, respectively. Laplace's equation (1.2) must now be modified to include the first- 
order correction through the Tolman length 8 

Ap = (2y /R)(1  - 6/R) .  (1.6) 

A p  is a unique function of T and p and does not depend on the choice of the dividing 
surface. 
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The mechanical and thermodynamic routes to the surface tension, although successful in 
calculating it for large drops, are inappropriate for small radii and fail to predict microscopic 
properties such as the structure and stress in the interfacial region. In addition, for small 
drops, the uniform liquid phase inside the drop. a necessary ingredient of these two routes, 
departs from the actual state prevailing inside a small drop, because in computer simulations 
[61 it was found that in small drops the density is non-uniform up to the centre of the drop 
and the surface tension deviates from the flat interface value. Such small systems can be 
described by statistical mechanics of inhomogeneous fluids together with an appropriate 
molecular model. 

Guermeur et a1 [ 101 found that the surface tension exhibits a non-monotonic behaviour in 
contrast to the monotonic one (it decreases as the drop radius decreases) found in [I 11, [14], 
and [ZO]; the latter behaviour is in agreement with the computer simulation of Thompson 
et al [6]. Another interfacial quantity studied is Tolman’s length 6 ,  which has caused much 
debate. Guermeur eta1 1101 found that it is negative for R, > 25.06 8, and positive for equal 
or smaller R, values while in [ l l ]  and [I41 6 is positive and increases as the drop radius 
decreases; however, in numerical simulation its behaviour is not clear [6,15,21]. Fails 
et a1 1141 also calculated the pressure tensor components pN(r), and pr(r)  (the normal 
and transverse respectively), finding that all the drops they had considered, irrespective of 
their size, initially, are under tension (pT(r) < pN(r)) but later are under compression 
(p&) > pN(r)), while in computer simulation [6,15] this behaviour was not detected. 

It seems from the previous discussion that there are many problems concerning the 
various interfacial quantities; we study, in detail, the interfacial properties of a one- 
component drop immersed in a vapour background (temperature T )  using Sullivan’s model 
[SI and a suitable grand canonical functional. Sullivan’s model was applied successfully 
to planar interface fluids (onecomponent and binary mixtures [2, 8.28-301). Here this 
model is applied to drops of various sizes at reduced temperature T* = T j T ,  = 0.8, where 
T, is the critical temperature of the fluid. After the calculation of the density profile as 
a function of the distance from the cen@e of the drop, the various interfacial quantities 
(e.g., pressure tensor, surface tension, etc) are evaluated. These results are compared with 
other numerical and molecular dynamics (MD) calculations [6,15,21] based on other models 
and approximations, because of the lack of experimental results on spherical drops. The 
paper is arranged as follows. In section 2, we outline the mean field theory (ha) for a 
spherical interface and derive the relevant differential equation with the proper boundary 
conditions. Section 3 is devoted to the discussion of the pressure tensor, the mechanical 
and thermodynamic routes to the surface tension, and its associated radius. In section 4, 
we present the results of the numerical calculations of density profiles and the interfacial 
functions. In section 5, we discuss ow results and compare them with others. The model 
we have adopted is that of a model fluid of attracting hard spheres with diameter d. 

2. Theory 

We consider a one-component non-uniform system, comprising a liquid drop (of radius R )  
and a vapour background; the grand potential functional of this system, in the absence of 
an external field, is 
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where e(r)  is the average number density at point T ,  p the bulk vapour phase chemical 
potential and V the volume of the system. The repulsive force contribution to the Helmholtz 
free energy is treated in the local density approximation in that fh[e(r)] is the Helmholtz 
free energy density of a uniform hard-sphere fluid at density e(r). while the long-range 
attractive forces are treated in the mean field approximation so that w(r) is the attractive 
part of the pairwise potential between two fluid molecules [1,7]. 

The equilibrium density e(r) is that minimizing the functional (2.1) and by setting 
&2[e(r)]/8e(r) = 0, the Euler-Lagrange equation results: 

CL = /~ .de(r) l+ / w(lr  - T'l)e@')dr' (2.2) 

where /I&(T)] = afh[e(r)]/ae(~) is the hard-sphere chemical potential; when (2.2) is 
substituted into (2.1) the equilibrium grand potential SZV results. The integral equation (2.2) 
can be converted to a non-linear second-order differential equation by choosing properly 
the interaction potential [8] 

m(r) = -(a!A3/4z)e-Ar/Ar (2.3) 

where A is an inverse range length such that Ad = 1 and LY is given by 

a! = - J W ( T )  dr .  (2.4) 

Assuming spherically symmetric solutions, e(r) = e(r), to (2.2) and that the centre of 
the drop coincides with the origin of the coordinate axes, the integration in (2.2) over the 
polar angles B and 'p can be done analytically, 

/I. = ph(u) - - u'p(u')[e-l"-"'l - e - ~ " ~ u ' ~ ] d ~ '  (2.5) 2", bm 
where U = Ar, the dimensionless radial distance from the Centre of the drop, and if the 
integral equation (2.5) is differentiated twice with respect to U it yields 

dZ/I.h(U)/dU2 + (%'u)d/I.h(u)/du - /Lh(u) f /I. = -a!Q(U). (2.6) 

This equation is similar to that in the flat geometry [SI apart from the second term in the 
left-hand side, which causes significant complications in the behaviour of the system and 
needs a subtle analysis. The solution to (2.6) is uniquely defined if this is supplemented by 
proper boundary conditions so that its solution represents a real system. We examine the 
behaviour of the solution in the two limiting cases as U -+ 0 and U -+ CO. As the distance 
U becomes larger the contribution of lhe term (2pb(u)/u) becomes less significant, so the 
behaviour of the density profile e(r) is similar to that of the one-dimensional planar interface 
at the same temperature @I; thus one of the boundary conditions is that /I&) approaches 
px = fih(gvs) (the hard-sphere chemical potential of the bulk vapour with density as 

However, as U approaches the centre of the drop, U = 0, the solution is less well 
behaved, since at the origin U = 0 (2.6) is singular if pL(u) remains non-zero in the Limit 
U + 0; @{(U) will diverge in this limit and the solution P h ( U )  will be singular. However, 
this singularity can be removed if / I . ~ ( u )  vanishes as U approaches zero, thus 

U -+ CC. 
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according to the I'Hopital rule. Therefore, in the neighbourhood of the origin (2.6) becomes 

(2.8) = f(FLh(U) - Lc - UP(U)) .  
U-0 

As the drop becomes increasingly larger, the density at the centre of the drop, e(O), 
approaches asymptotically a constant value that is very nearly equal to els (the density of 
a uniform liquid with the system's chemical potential p(el.) = p, i.e., eb is one of the 
solutions of p(e)  - p = 0; the other is evs) and the larger the drop, the closer e(0) to ek, 
but when the radius R of the drop is small. then e(0) departs significantly from ets and 
becomes smaller. The other boundary condition is the vanishing of &,(U) at U = 0, i.e., 
&(O) = 0, so that the solution at U = 0 is bounded. 

The crucial point is the calculaiton of the density profile that results as a solution of 
the previous boundary value problem (2.6); however, instead of solving (2.6) for the hard- 
sphere chemical potential p&) (a monotonically increasing function of density e@)), this 
equation was transformed into an equation for the packing fraction IJ = rcd3e/6 by adopting 
the Camahan-Starling approximation for the hard spheres, i.e., 

Ph(fl) = keTOn V 3- ( 8 ~  - 977' + 3 d ) / U  - V ) 3 )  (2.9) 

for the hard-sphere chemical potential, while the hard-sphere pressure is 

P b ( d  = kBTe(1 f q +  11' - V3)/(1 - S)' (2.10) 

where kg is the Boltzmann constant. 
Substitution of (2.9) into (2.6) gives, 

r" = - ( 2 / U ) V ' w  - Bl(?)sn(u) - w7) - B 3 h ) W  (2.1 1) 

for U # 0 and 

(2.12b) 

subject to the boundary conditions 

IJ'(0) = 0 IJ(o0) = IJ" q'(c0) = 0 (2.13) 

where 6 = (kB T)-'. 

about U = 0 [9] 
In the neighbourhood of the cenh-e of the drop, the solution is expanded in power series 

q(u)  = ~ ( 0 )  + (u2/2)q"(0) + ( ~ ~ / 3 ! ) ~ ( ~ ' ( 0 )  + (u4/4!)q"(0) +.  . . . (2.14) 
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Substituting (2.14) into (2.11), the coefficients #)(O), i = 2,3,4, .  . . can be expressed in 
terms of the unknown value q(0) = q of the packing fraction at the origin U = 0, 

q"'(0) = - 4 I M q )  + qBdq)l (2.15a) 

43)(0) = o (2.156) 

thus the solution (2.14) becomes 

q(u) = q + (u2/2!)qQ'(0) + (u4/4!)q"(0). (2.16) 

For the subsequent calculations all the quantities and equations are transformed to 
dimensionless 'reduced' units: 

p' = fi/kBT p* = d ' p / k ~ T  T' = TIT,  U = r/d 
(2.17) 

y * = d 2 y f k ~ T  e " = e d  U* = . / ( k ~ T d ~ )  = ll.lOZ/T* 

thus 

(2.18a) 

(2.18b) 

although the asterisks, for simplicity in the expressions, will be suppressed, all the results 
will be with respect to the dimensionless variables (2.17). 

Initially, the coexisting bulk densities eVc and elc, together with the corresponding 
spinodal ones are obtained, for various temperatures T ,  by solving the 
simultaneous equations 

and 

P ( e d  = P ( e d  p(evc)  = /.4ed (2.19) 

for the densities eVc and &,, and the equations 

d(evlp) = 0 d(elsp) = 0 (2.20) 

for the spinodal densities evsp and elsp. The equilibrium density profile for the planar 
interface was obtained by numerically solving the Corresponding equation for the free 
interface [SI 

(2.21) 

for the reduced temperature T' = 0.8 and coexisting densities eVc = 0.0414786, 
el, = 0.586731 6, (see figure 1; the zero of the x-axis was chosen deep in the liquid 
phase where fi&qc) = &), also the corresponding surface tension was calculated from the 
formula 

dLch(x)/& = -[bh(x) - fi)' - k @ h ( x )  - P)]"' 

(2.22) 
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Figure 1. The density profile for flat geometry and T* = 0.8. 

and it was found to be equal to 0,440094 8. 
A onecomponent two-phase system separated by a planar interface has only one degree 

of freedom according to the Gibbs phase rule, usually chosen as the temperature T, while 
a system comprising a spherical drop and bulk vapour has another, which is the parameter 
controlling the size of the drop; as such a parameter we choose the density em of the 
homogeneous bulk vapour phase surrounding the drop (this is not the only choice), which 
can take any value within the interval (evc,evsp). The curvature influences not only 
the various interfacial quantities but the bulk ones, as well. The bulk vapour phase is 
supersaturated, yielding a larger bulk vapour density, en, than is the case with the planar 
geomew (density eVc); also the pressures pv  and p1 of the bulk vapour phase and the 
corresponding liquid, respectively, are not equal, in contrast to what happens in the planar 
geometry. The equilibrium (at temperature T )  between a liquid and its vapour in the 
case of a planar dividing surface is achieved by the equality of their chemical potentials 
and pressures (relations (2.19)), while for the spherical interface, at equilibrium, only the 
chemical potentials are equal and not the pressures (see Laplace equation (1.1)). 

3. Pressure tensors 

In any homogeneous phase, the pressure is uniform (scalar quantity), hence, in the case of 
a two-phase system, in the interior of either homogeneous phase the pressure tensor (the 
negative of the microscopic stress tensor) reduces to the bulk pressure p multiplied by the 
unit tensor 1. However, within the interfacial region the force acting across a unit area is 
not the same in different directions since the physical interface is of finite thickness and 
the density varies considerably with position within this layer; consequently, the pressure 
tensor also varies. The pressure tensor p(r) consists of an isotropic part, which is well 
defined, and a configurational part, which is not (thus introducing the arbitrariness into the 
definition of p(r) [l, 12,13,21]. Recently, Bats and Lovett claimed that this ambiguity 
can be eliminated by imposing on P(T) St Venant’s condition so that P(T) is well defined 
1231; Rowlinson, in a subsequent letter [24], argued that this condition implies a vanishing 
surface tension; in a counterargument Baus and Lovett 1251 commented on the validity of 
their argument; however, the matter is still unclear. The drop is in mechanical equilibrium 
expressed by the equation (in the absence of any external field) 

v . p(r) = 0. (3.1) 
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For a planar dividing surface (coinciding with the xy-plane) in the interfacial layer pxy, 
pYz and PU vanish, while pX,(z) = prY(z) = PTW and P&) = PN(z) = pRat (bulk 
pressure), thus the pressure tensor, in this case, is written 

(3.2) p(Z) = m ( Z ) @ z ; x  f )yay) + PN(Z)%& 

where (is, 2,, f )  is the orthonormal set in Cartesian coordinates. The tangential component 
~ T ( z )  may vary in a complicated way depending only on z (due to symmetry), while the 
normal component PN(Z) remains constant even in the transition layer. 

In the case of a spherical interface the pressure tensor p(v), on grounds of symmetry 
(see [ l ]  and [26]), will depend only on the radial distance r and consists of a transverse 
part pT(r) and a radial one pN(r), i.e. 

p(r) = PN(r)[ir&l + m(r)ll - & % I  (3.3) 

where I is the (3 x 3) unit tensor. Now, the normal component PN(T) is no longer a constant 
but varies with the distance from the origin of the drop as determined by (3.1). Substitution 
of (3.3) into (3.1) gives the result 

pk(r) = (2/r)[m(r) - PN(~)I  (3.4) 

where the prime denotes the derivative with respect to r .  Equation (3.4). on the one hand, 
can be integrated from inside to outside, 

(3.5) 

The left-hand side of (3.5) can be considered as one of the possible definitions of the 
pressure difference Ap (see below (3.17)). On the other hand, (3.4) can be regarded as a 
differential equation for PN(r), once m( r )  is known, i.e. 

(3.6) (r/2)dP~(r)/dr + PN(r) = m(r) 

which, when integrated, yields the result 

(3.7) 

The Helmholtz free energy F as well as the grand potential C2 are independent of the 
choice of the position of the dividing surface; as a consequence we have [ I ]  

AP = PI - ~v = 2 ~ / R y  + [dy/dRyI ( 3 . 8 ~ )  

C = A[dy/dRy] (3.8b) 

where R, is the radius of the dividing surface and C the coefficient of the curvature term. 
The relation ( 3 . 8 ~ )  is a generalization of the Laplace equation to allow for higher-order 
curvature corrections. 

The surface excss density is given by the relation 111 
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where N, is the surface number of molecules. 

properties concerning interfacial quantities. The first dividing surface is that for which 
The dividing surfaces are chosen to lie inside the interfacial region and satisfy special 

C ( R )  = 0 (3.100) 

or, equivalently, 

PI - ~v = 2Y(Rd/% (3.10b) 

that is, the one for which Laplace’s equation preserves its form and is called the surface of 
tension; its radius is R,. Comparing (3.10~~) with (3.8b) we see that this dividing surface 
minimizes the surface tension. 

We now proceed to calculate the various interfacial functions (pressure tensor, surface 
tension and associated radius) for the model fluid under consideration (21.3). 

p&) can be identified with minus the grand potential free energy density 1261, i.e. 

p & - )  = -oo[e(r) l .  (3.11) 

If the Euler-Lagrange equation (2.2) is substituted into the grand potential functional 
(2.1), the equilibrium grand potential S ~ V [ Q O ( ~ ) ]  results, 

Qdeo(r)l = -/ [ p d e o ( r ) l +  jeo(r)/dr‘eo(r’)s(lr-r‘I) 1 d r  (3.12) 

where e&) is the equilibrium density; accordingly (3.11) can be rewritten 

a ( r )  = ph(eo(r)) + ,eo@) eo(r’)w(lr - r’I)dr’. (3.13) 

The pressure tensor components a ( r )  and pN(r) are different in the interfacial region; 
in the homogeneous bulk vapour phase they are identical and coincide with the bulk vapour 
pressure 

l . i  

Pr(w) = P N ( w )  = P v  = P ( P d  (3.14) 

as can be verified from (3.6) and (3.13). Also these two components are identical at the 
cenae of the drop U = 0, 

thus, if the drop is large enough, the interior phase possesses a uniform part, p ~ ( 0 ) .  p ~ ( 0 )  
and p ( 0 )  tend asymptotically to the pressure p~ = p(&). which corresponds to that of a 
uniform liquid phase of density els such that p(e1.) = p(&; otherwise, the interior phase 
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Figure 2. (I) Variation of the pressure at the drop centre, p(p(0)) (a). the n o d  component 
of the pressure tensor at the drop centre, p ~ ( ~ ( 0 ) )  (b), and the pressure at density pr (c).  with 
respect to bulk vapour density Q-. (U) Pressure difference Ap against buk vapour density pm: 
p ( Q d  - P ( Q d  (0); Elation (3.17) (b); PN(I)(O)) - PN(Qm) (C); P(P(0)) - P ( Q d  (d) .  

is non-uniform up to the centre of the drop, p ~ ( 0 ) ,  p ~ ( 0 )  and p(0)  depart from p1 (see 
figure 2). 

We multiply (2.6) by /.&(U) and integrate &om a point deep inside the drop to one in 
the bulk vapour phase, thus obtaining 

[&(e) - - P)' + %ph(e)Iouuide - [&e) - ( f ide)  - PI' + 2aph(e)Ii.,iae 
outside 4 

inside U 
-1 -&(u)du. (3.16) 

The quantity inside the brackets is equal to (2ap(e))  since &(U) vanishes at both limits; 
thus (3.16) may be written as 

(3.17) 

This is a generalization of the Young-Laplace equation for a spherical dividing surface; the 
left-hand side is also considered as another possible definition of the pressure difference 

Another important physical quantity is the surface tension y(R,; Ap) defined as the 
grand potential per unit surface area and depending on the dividing surface. Starting from 
its definition the surface tension y ( R y ;  Ap), in reduced units, associated with a dividing 
surface with radius R, ,  is [8] 

AP. 

[Ph(U) - PV - $P(u)(cL - flh(U))IU'dU -+ ~ R Y A P  (3.18a) 
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on recalling (2.6). Integrating by parts the first and the third terms in the integrand in 
(3.18b), we find 

(3.18~) 

As radii R, we have chosen Rs, & and R-. 

combining the relations (3.10b) and (3.18~). thus finding 
The radius R, can be found either by invoking its defining property (3.10a) or by 

(3.19) 

In addition to R,, another dividing surface is introduced through the requirement 
r ( R )  = 0, called the equimolar dividing surface [1,6]; its radius, Re, can be found from 
(3.9) by setting r ( R )  = 0, 

(3.20) 

Although the last two dividing surfaces, with radii R, and &, are the ones mainly used, 
another dividing surface (with radius R,) is also used, which relies only on the density 
profile itself. 

The so-called mechanical route to the surface tension is defined through the relations 
(3.10b) and (3.19). while the thermodynamic route is defined through (3.10b). (3.20) and 

Rs = I 3 ~ w  - [9~: - ~ Y ~ R & J I ” * ) / A P  

which can be obtained from (3.10b) and (1.6) [1,6,11]. 

(3.21) 

The curvature coefficient C ( R )  (3.8b), on account of (3.17) and (3.18c), can be written 
as 

4. Results 

4.1. Density projiLes 

The differential equation (2.11, 2.16) with the boundary conditions (2.13) was solved for 
various values of the bulk vapour density pm (used to label the individual density profiles) 
at a fixed temperature for the calculation of the density profile. This equation was solved 
numerically for the reduced temperature T* = 0.8 and various bulk vapour densities qvs 
lying in the interval (qVc, qvv), where qve is the coexisting vapour density and qusp is the 
corresponding spinodal density. All the relevant qvs, together with the corresponding liquid 
densities and the densities q(0) at the centre of the drop, are presented in table 1. The 
density profiles resulting as solutions to (2.11) are presented in figure 3; those of the larger 
drops represent a stable liquid in equilibrium with a metastable vapour and are similar to 
those of a planar interface at the same temperature; from these profiles one can ensure 
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the existence of a homogeneous phase inside the drop, in agreement with [6], [I l l ,  [I41 
and [15]. For each profile one can calculate the radius Rho", of a sphere, with the same 
centre as that of the drop under consideration, enclosing that part of the interior phase of 
thc drop characterized by the constancy of its density, that is, it contains the homogeneous 
'liquid' phase (figure 4); as long as &om is non-vanishing the interfacial zone separates two 
homogeneous regions, while for Rho,,, 0 the spherical droplet contains an inhomogeneous 
fluid phase up to its centre, where, now, the local density is an unstable fluid, and the 
density profile fails to attain bulk values at the centre (see table 1); however, the symmetry 
condition, fik(0) = 0, still holds. 

0 4 8 12 16 20 24 28 
U 

Figure 3. Density profiles for various drops labelled by the bulk vapour density qua at T' = 0.8 
for Q- = 0.5 (n); 0.055 (b); 0.06 (c); 0.075 (4; 0;095 (e); 0.1166 (f). The upper and 
l o w  horizontal lines correspond to the planar interface liquid and vapour reduced coexistence 
densities, respectively. 

As the density qvs of the bulk vapour phase increases (or, equivalently, as the drop 
size decreases, see figure 5), the density ~(0) at the centre of the drop initially increases 
well above the liquid planar surface value vic = 0.307 21 1 87, as predicted by the Laplace 
equation, reaching a maximum value at about evs = 0.059489431 (or, qVs = 0.031 148593 
at Re = 9.101 089, R ,  = 12.001 171), then ~(0) starts decreasing as vVs approaches qvSp 
in agreement with [6], [ l l ]  and [14]. This behaviour of ~(0) is brought out in figure 6; a 
similar behaviour is also displayed by the pressure p(0) at the drop centre, and by p ~ ( 0 ) .  
as was seen earlier in figure 2, whre the different nature of these quantities for small drops 
can also be seen. For the larger drops the density ~(0) at the centre is nearly equal to 
the liquid density 171% implied by bulk thermodynamics, while for the smaller droplets q(0) 
departs considerably from VI. (this is brought out by figure 7; see also table 1). 

The average drop size can also be expressed by the number of particles N h p  contained 
in the drop, 
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Figurc 4. The radius Rbam of the sphere contlinng a 
uniform Buid for the density profiles in figure 3 against 
bulk vapour density pvr. 

Figure 5. The bulk vapour density qvs against 
equimolar radius Re. The horizontal line mrresponds to 
the vapour density for the planar interface at the same 
temperamre. T' = 0.8. 

where RIO is the distance (radius) from the centre of the drop such that 

e t R 3  = evs + W e l S  - e d .  (4.2) 

4.2. Pressure tensors 

Once the density profiles have been calculated, the pressure tensor components P N ( U )  and 
~ ( u )  can be evaluated from the expressions (3.7) and (3.13), respectively, and their profiles 
are displayed in figure 8 for a sequence of increasing supersaturation. 

For the larger drops (small supersaturations) both components p&) and p+) cioncide 
over a distance inside the drop reflecting the existence of a bulk-like liquid phase inside the 
drop. However, within the transition region the two components are separated from each 
other; the transverse component a ( u )  becomes smaller than the normal ~N(u)(~T(u) < 
~ N ( u ) ) ,  so that the interface is under tension and p&) displays a deep lobe, which for 
the smaller supersaturations acquires a negative part. Another characteristic of their profiles 
(more pronounced in small supersaturations) is the existence of a small part of the interface 
under compression (p&) z PN(U)) that disappears in larger supersaturations. In the 
outer region of the interface, inside the bulk vapour phase, both tensors join smoothly 
together to their common value, which coincides with the bulk vapour pressure pv, i.e., 
pr(m) = p~(03) = pv. This overall behaviour of ~ N ( u )  and a ( u ) ,  for the larger drops, 
is in accordance with the MD simulations of Thompson et al [6], Nijmeijer et al [15] and 
the numerical calculations of Falls et a! 1141. As the supersaturation is increased further 
towards the spinodal density, there is no portion of the interior of these small droplets where 
the two components pr(u) and p&) coincide, except at the centre of the droplet (where 
they coincide by symmetry), because inside these small droplets there is no region that can 
be considered as bulk l i e  (a similar behaviour was found earlier in the density profiles). 
As the supersaturation is decreased towards the planar interface limit, the drops become 
larger and larger; the pressure difference Ap is reduced so that in the limit of a planar 
interface pp&) attains a constant value equal to the bulk pressure, p&) = p(eYE)  = pht, 
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Figure 6. The variation of the density at the orido of 
the drop. q(O),  with the buk vapour density evs. 

Figurc 7. The ratio of the 3aud density at the drop 
centre (~(0)) to thal predicted by bulk thermodynamics 
(eb) against buik vapour density (4,4 

while ~ ( x )  varies with distance according to (3,11,13) and displays a large negative part 
in the interfacial region, which is mainly smaller than P N ( X )  (interface under tension) but 
ultimately it joins smoothly with P N ( X ) ,  although on the vapour side of the profile there 
exists a small region where P T ( X )  > ~ N ( x )  (interface under compression), (see figure 9); 
this behaviour was also found in 1141 and [16]-[19] for the Irving-Kirkwood (x) version 
of the pressure tensor but not for the Harasima (H) version. 

The surface tension (3 .18~)  and the two radii (3.19,21) of the surface of tension depend 
explicitly on the pressure difference Ap (& and R,, do not depend on Ap),  which in 
non-planar geometries is an ill defined quantity but connected with the chemical potential 
through the Gibbs-Duhem relation Sp = e8p (at constant temperature; in planar geometries 
A p  is identically zero). In general, A p  can be defined in various ways [6,14,15,21]: by 
the expression (3.17), by subtracting the bulk pressure pv from that at the origin of the drop 
~ ( 0 ) ~  or subtracting PNkva) = pV from PN(O), or P ( e d  = P" from p(ed = PI (figure 2). 
However, for large drops, the pressures p(el.), p(O),  and p ~ ( 0 )  are equal; as a consequence, 
the corresponding Ap-curves coincide for these drops and do not deviate considerably when 
the supersaturation is still small; however the deviation is significant for the smaller drops 
(high supersahration). The pressure p ( r )  (2.18b) is a monotonic function of density and the 
pressure pv of the bulk phase does not vary significantly, so the corresponding Ap-curves 
exhibit the same behaviour as those of p(O), p ~ ( 0 ) ,  and p&) = PI. respectively. 

to eVs; so does els (both are solutions of the 
equation p(e) - p = 0), and PI is an increasing function of els; the other two quantities 
p ~ ( 0 )  and p ( 0 )  attain a maximum value, which reflects the non-monotonic behaviour of 
e(0) (see figure 6). For large drops (when is close to eve) PI, p ~ ( 0 ) .  and p ( 0 )  are 
equal or nearly equal, while for smaller drops they depart and m(0) =- p(0 )  because 
p ~ ( 0 )  = m(0) = p(0)  + i ( p  - p(0)) and 

In the integral expression (3.17) for Ap,  the integrand vanishes inside the bulk vapour 
(exterior) phase, since, in this region, &(U) is zero identically, thus the contribution to the 
integral in (3.17) originates solely from the interior and interfacial regions and this causes 
Ap to increase (the integrand is positive and the density profile is steeper for the smaller 
drops). 

The four definitions for Ap are independent from each other in the sense that the 
integral definition monitors the behaviour of the derivative of the hard-sphere chemical 
potential inside the drop and in the interface, while the other three extract Ap either from 

The density eW increases from 

> p(e(0)) for real densities. 
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Figure 8. (a) (I) Ressure tensor components p ~ ( u )  and p r ( u )  against reduced distance 
from the =me of lhe drop for reduced density pur = 0.05(qv, = 0.026 18). (0) Pressure 
tensor components for pvr = 0.06(q, = 0.031 416). (b) 0 Pressure tensor components for 
pvr = 0.0S5(qVs = 0.0445). @) Pressure tensor Components for pvr = O.I(q, = 0.05236). 

the pmsure itself or the pressure tensor in the 'bulk' phases. 
For the calculation of y (R , ;  Ap) and R1, Ap is chosen to be given by (3.17). because 

this expression depends on the global behaviour of the system and not on specific points: 
this is also valid for small drops, where the interior phase is no longer bulk like and does 
not possess a plateau and the density e(0) deviates significantly from the e k  implied by 
bulk thermodynamics (which assumes a bulk-like interior phase). As the supersaturation 
is increased from the planar vapour value (Le., starting from very large drops) the tension 
increases slowly from its planar value up to a maximum value (see table 1 and figure lo), 
which occurs around R, 8 when R ,  is taken to be Rs or R,, and R, 2 6 when Ry is 
taken to be &; later it decreases rapidly as the size of the drop decreases, in agreement with 
simulation [6] and other numerical calculations [I 1,14,20]: this non-monotonic behaviour in 
y ( R , ;  Ap) was observed earlier only in [IO]. The initial increasing tendency of y ( R , ;  Ap) 
is similar to that of the density at the centre of the drop, e(O), which also attains a maximum 
value (in this range of densities, the drop formed is large); this increase in density implies 
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Figure 9. Flat interface pressure tensor components 
PN(X) and p r ( x )  against reduced diaance. 
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Figure 10. Surface tension y ( R y )  against drop radius 
R,: ye againa R. (U ) ;  ymai against R,, (b); yI against 
R, (c) (calculated via Lhe mechanical mute). Ap was 
set to that of (3.17). 

accumulation of particles in the neighbourhood of the centre of the drop, resulting in 
increasing surface tension. For the smaller drops, where the density is non-uniform up 
to the centre, the value of the surface tension does not deviate very much from that of ym 
and, as long as the overall behaviour of tensions is the same, ymax can be used as a measure 
of the surface tension of drops of any size. 

The asymptotic behaviour of Ap is described by the formula (see [6]) 

lim Ap = 2y,jRe (4.3) 
R.-m 

and this appears in figure 1 1  together with the correct form of Laplace equation (1.2) 
calculated through the mechanical route. For small drops the asymptotic form (4.4) deviates 
from the correct Laplace equation, giving larger Ap, while for the larger drops both formulae 
give nearly the same results (see [6] and [14]). 

1 ./Re 
F- 11. The pressure difference as a function 
of ( 1 J R J  as deduced f" Lhe correct form of the 
Laplace equation (full line) and from the asymptotic 
form (dashed line). 

Figure 12 Tolman's length S against equimolar radius 
R.. 

In figure 12 we plot Tolman's length 6 = Re - R, (see table 1, calculated through the 
mechanical route (3.10b, 19)) as a function of the equimolar dividing radius Re. Tolman's 
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length 6 is negative (an expected result since the surface tension y. is greater than ym) 
and strongly drop dependent, thus the surface of tension is on the gas side of the equimolar 
surface; a similar behaviour of 8 was observed in [lo] and [13], while in [6] ,  [ l l ]  and [ 141 6 
was found to be is positive and tend to zero as & --f 00. Nijmeijer eta1 [15] have done MD 
simulations on a similar system at T* = ksT/c = 0.9, finding that the data for 6 is scattered 
around zero, and concluded that 16*1 c 0.7; this result was also verified by Blokhuis and 
Bedeaux [Zl]. In the limit R, -+ co, for the transition from the spherical interface to the 
planar, one expects to find 6 negative since the liquid-vapour interface (figure 1) is not 
symmetric (the vapour branch of the density profile is steeper than the liquid branch) thus 
zc + zs ([31]; see (3.19) and (3.20); for planar interfaces see [17], [18] and [22]). 

The distribution of matter in the interface can be better described by adsorption (3.9) as 
a function of the distance from the centre of the drop (figure 13) for various bulk vapour 
densities evs. For small distances from the centre of the drop adsorption varies slowly, in 
the interfacial region it varies significantly, but for larger distances, within the bulk phase, 
it becomes negative and varies slowly. The respective adorption curves cut the radius axis 
at a point identical to R,. 

Figurr 13. Adsorption U R )  as a function of the 
distance from the origin of the drop for various bulk 
vapour densities Q-: 0.05 (a): 0.052 (b); 0.055 (e); 
0.065 (d) ;  0.085 (e).  

zoo 7 

I I 0 I t  9s 16 I ,  19 2‘ 25 2s 

Figure 14. The curvature Ierm C(R) as a funclion 
of the distance fmm lhe origin of the drop for various 
buk vapour densities Q”,: 0.1 (a);  0.085 (b); 0.065 (c ) ,  
0.052 (d); 0.05 (c). 

In figure 14 we present the plots of the curvature term C ( R )  (see (3.86)) for various 
bulk vapour densities; each curve cuts the radius axis at a point that coincides with Rs (the 
radius of the surface of tension (3.19)). 

5. Conclusions 

We have studied the interfacial properties and stresses of liquid drops of various radii 
embedded in a vapour background using Sullivan’s model at reduced temperature T’ = 0.8. 
The advantage of this model over other models is that it can be described by a non-linear 
differential equation instead of an integral equation; this was solved numerically for various 
values of the bulk vapour density eVs. The numerical results of this mean field theory are 
compared with the numerical and m simulations for other model fluids [6,10,1 I ,  13-15,211 
expecting only qualitative agreement. 

As evs increases from towards the drop size decreases; initially, the distribution 
of particles around the cenire of the drop is constant, implying the existence of a 
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homogeneous phase inside the drop (as required by bulk thermodynamics), but this 
disappears gradually as the drop size decreases further so that the interior phase becomes 
non-uniform up to the centre of the drop; however, parallel to this behaviour of the interior 
phase, the density at the drop centre initially increases, but later decreases, and departs 
increasingly from the density els predicted by bulk thermodynamics. These results are in 
qualitative agreement with the numerical and MD calculations referred to above. 

A striking result of this mean field theory calculation is the non-monotonic behaviour 
of the surface tension as increases, in contrast to the monotonic behaviour shown. in 
general, by y(R) (the only exception is in [lo]). Another quantity related to the surface 
tension is Tolman’s length 6, which has caused much debate. The 6 obtained by mean field 
theory is negative and it seems to be such in the planar interface limit Re --f W. In the two 
main routes to the surface tension, the pressure difference Ap is involved; this quantity, 
although is independent of the dividing surface, displays a significant drawback, it is not 
uniquely defined in the sense that it can be defined in various ways independently and their 
results are identical only for large drops. 

In conclusion, some of our results agree, qualitatively as expected, with those of other 
models and approximations, but some others do not, e.g., the surface tension, Tolman’s 
length, Ap, pressure tensor; more ~EI simulations and experiments on real systems could 
resolve some of the problems. 
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