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Density functional theory for spherical drops
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Zografos GR 157 84, Athens, Greece

Received 3 Decernber 1993, in final form 8 April 1994

Abstract. We have applied Sullivan’s model to study the interfacial properties of a spherical
drop embedded in a one-component fiuid using the mean field approximation. We have examined
the effect of drop size (expressed by the equimolar radius R.) on the density profile, pressore
tensor, pressure difference Ap across the interface, surface tension, Tolman’s length, and density,
pressure, and normal component of pressure tensor at the centre of the drop. Ap is found to be
an ill defined quantity in the sense that it can be defined in various ways, whose results coincide
for large drops. The surface tension is a non-monotonic function of R.; it increases slowly
from its flat interface value as R. decreases until a maximum value is attained, then it decreases
rapidly. For small supersaturations, the drops are under tension and compression while at large
supersaturations they are only under tension. The results of this theory are compared guatitatively
with previous molecular dynamics simulations and theoretical catculations for drops.

1. Infroduction

The statistical mechanics of curved interfaces, mainly spherical and cylindrical, is equally
important as (if not more important than) that of planar interfaces, but it needs a more subtle
analysis than the fiat geometry wherein much progress has been achieved in understanding
its statistical mechanical properties [1-3]; aithough the theory of curved interfaces was
founded on sound thermodynamic arguments, late in the 1940s [1,4,27], it has received
little attention. Non-planar interfaces are involved in many circumstances, e.g. oil recovery,
homogeneous nucleation, pollution technology, etc, thus a detailed understanding of the
curvature dependence of the interfacial properties of curved interfaces (which are still not
satisfactorily understood) is important. Here we examine spherical fluid interfaces embedded
in a one-component vapour background.

The early studies of the influence of curvature on the properties of drops date back
to Young and Laplace in the nineteenth century. Laplace considered a drop of radius R
enclosing a homogeneous liguid-like phase (interior phase) separated from a homogenecus
bulk vapour phase (exterior phase) by a mathematical dividing surface where the density
changes abruptly from its constant value inside the drop to its constant value outside; the
drop, to be stable against the surface tension y (regarded as a mechanical force) of the
vapour-liquid interface, must set up a pressure difference Ap over the interface to balance
the contracting force and maintain the system in equilibrium; the condition of mechanical
equilibrium, called the Laplace law, is

Ap =2y/R (1.1

where Ap = p; — py is the pressure difference between the pressure py of the interior phase
and p, the pressure of the exterior; these pressures can be identified as ‘bulk’ pressures in
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the centre of the drop and far outside the drop, since the drop is considered to be large so
that the interior phase is homogeneous (constant interior density g;). However, the exact
numerical value of ¥ is not specified, but y is considered to be equal asymptotically to its
planar value y,, as the drop grows.

Gibbs was the first to treat the spherical liquid interface on the basis of thermodynamics
regarding this inhomogeneous system as consisting of a homogeneous interior phase (bulk-
like liquid) separated from the exterior bulk vapour phase by an arbitrary mathematical
spherical dividing surface possessing a radius-dependent tension ¥ (R) and an excess mass
density I'; [1,4]. Gibbs introduced the notion of the surface of tension (with radius R; and
associated surface tension ; = y (Ry)) such that the Laplace equation retains its form, i.e.,

Ap =2y (R)/R; (1.2)

and for which the curvature coefficient C(R) vanishes (C(R) = A[dy/dR]; A is the area
of the dividing surface with radius R and associated surface tension y; the brackets denote
changes following from a notional change in the position of the dividing surface and not a
physical change in the state of the system). Another dividing surface, introduced by Gibbs,
is the so-called equimolar dividing surface with radius R, and associated surface tension
ve; this choice makes the excess surface density I'; vanish. We further introduce another
surface at r = Ry, Where the absolute value of the first derivative of the number density
g(r) with respect to the distance r from the origin of the drop becomes maximum; the
associated surface tension is pnm. In any case, the dividing surfaces are intreduced solely
for computational convenience and the values of the observable quantities such as R, p,
Pv, and p (chemical potential} must be independent of the particular choice (for fixed N,
V and T), while (he value of the surface tension depends on the choice of the dividing
surface.

Tolman, on thermodynamics grounds, extended Gibbs theory to obtain the radius
dependence of surface tension [4]

y (R}

— =1/(14-25/R 1.3

7 (00) J(1+25/R) (1.3)
that is

¥(R) ., 2

— =1 -25/R+0O(1/R*). 1.4

e /R+O0Q/R%) (1.4)

Tolman introduced the new parameter § (known as Tolman’s length)
= lim (Re—Ry) =2.— 2 (1.5)
Re=+o0

where z, and z; are the equimolar and surface of tension dividing surfaces for the flat
interface, respectively. Laplace’s equation (1.2) must now be modified to include the first-
order correction through the Tolman length &

Ap = 2y /R)(1-3§/R). (1.6)

Ap is a vnique function of T and & and does not depend on the choice of the dividing
surface.
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The mechanical and thermodynamic routes to the surface tension, although successful in
calculating it for large drops, are inappropriate for small radii and fail to predict microscopic
properties such as the structure and stress in the interfacial region. In addition, for small
drops, the uniform liquid phase inside the drop. a necessary ingredient of these two routes,
departs from the actual state prevailing inside a small drop, because in computer simulations
[6] it was found that in small drops the density is non-uniform up to the centre of the drop
and the surface tension deviates from the flat interface value. Such small systems can be
described by statistical mechanics of inhomogeneous fluids together with an appropriate
molecular model.

Guermeur ez af [10] found that the surface tension exhibits a non-monotonic behaviour in
contrast to the monotonic one (it decreases as the drop radius decreases) found in [111, [14],
and [20]; the latter behaviour is in agreement with the computer simulation of Thompson
et al [6]. Another interfacial quantity studied is Tolman’s length &, which has caused much
debate. Guermeur ez al [10] found that it is negative for Ry > 25.06 A and positive for equal
or smaller R, values while in [11] and [14] § is positive and increases as the drop radius
decreases; however, in numerical simulation its behaviour is not clear [6, 15,21]. Falls
et al {14] also calculated the pressure tensor components pn(r), and pr{r) (the normal
and transverse respectively), finding that all the drops they had considered, irrespective of
their size, initially, are under tension (pr(r)} < pn{r)} but later are under compression
(pr(r) > pn(r)), while in computer simulation [6, 15] this behaviour was not detected.

It seems from the previous discussion that there are many problems concerning the
various interfacial quantities; we study, in detail, the interfacial properties of a one-
component drop immersed in a vapour background (temperature T) using Sullivan’s model
[8] and a suitable grand canonical functional. Sullivan’s model was applied successfully
to planar interface fluids {(one-component and binary mixtures [2,8,28-30]). Here this
model is applied to drops of various sizes at reduced temperature T* = T/ T, = 0.8, where
T. is the critical temperature of the fluid. After the calculation of the density profile as
a function of the distance from the centre of the drop, the various interfacial quantities
(e.g., pressure tensor, swface tension, etc) are evaluated. These results are compared with
other numerical and molecular dynamics (MD} calculations [6, 15,21] based on other models
and approximations, because of the lack of experimental results on spherical drops. The
paper is arranged as follows. In section 2, we outline the mean field theory (MFT) for a
spherical interface and derive the relevant differential equation with the proper boundary
conditions. Section 3 is devoted to the discussion of the pressure tensor, the mechanical
and thermodynamic routes to the surface tension, and its associated radius. In section 4,
we present the results of the numerical calculations of density profiles and the interfacial
functions. In section 3, we discuss our results and compare them with others. The model
we have adopted is that of a model fluid of attracting hard spheres with diameter 4.

2. Theory

We consider a one-component non-uniform system, comprising a liquid drop {of radius R)
and a vapour background; the grand potential functional of this system, in the absence of
an external field, is

Qylo(m)] = fv dr[fhla(r)] +deo(r) f g yw(lr —r'dr' - ug(r)} (2.1)
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where o(r) is the average number density at point r, p the bulk vapour phase chemical
potential and V the volume of the system. The repulsive force contribution to the Helmholtz
free emergy is treated in the local density approximation in that fi[o(r}] is the Helmholtz
free energy density of a uniform hard-sphere fluid at density o(), while the long-range
attractive forces are treated in the mean field approximation so that w(r) is the attractive
part of the patrwise potential between two fluid molecules [1,7].

The equilibrium density o(r) is that minimizing the functional (2.1) and by setting
8Q[e{r))/ée(r) = 0, the Buler-Lagrange equation results:

o = e ()] + [ wlr — () ds’ 2.2)

where uy[o(r}] = afile(r)]/do(r) is the hard-sphere chemical potential; when (2.2) is
substituted into (2.1} the equilibrium grand potential £y results. The integral equation (2.2)
can be converted to a non-linear second-order differential equation by choosing properly
the interaction potential [8]

w(r) = —(er®/4mde™ far (2.3)

where X is an inverse range length such that Ad = 1 and & is given by

o=— f w(r)dr. (24)

Assuming spherically symmetric solutions, g(r) = o(r), to (2.2) and that the centre of
the drop coincides with the origin of the coordinate axes, the integration in (2.2) over the
polar angles 8 and ¢ can be done analytically,

o o I n
o= ) — = f ' p (e — ] gy (2.5)
21!. 0

where u = Ar, the dimensionless radial distance from the centre of the drop, and if the
integral equation (2.5} is differentiated twice with respect to « it yields

() /du® + (2/u) dun(u)/du — pn(u) + p = —ag(n). (2.6)

This equation is similar to that in the flat geometry [8] apart from the second term in the
left-hand side, which causes significant complications in the behaviour of the system and
needs a subtle analysis. The solution to (2.8) is uniquely defined if this is supplemented by
proper boundary conditions so that its solution represents a real system. We examine the
behaviour of the solution in the two limiting cases as # — 0 and # — co. As the distance
u# becomes larger the contribution of the term (2uy(1)/1) becomes less significant, so the
behaviour of the density profile o(r) is similar to that of the one-dimensional planar interface
at the same temperature [8]; thus one of the boundary conditions is that uy (1) approaches
ty = pn{ow) (the hard-sphere chemical potential of the bulk vapour with density gvs) as
i — co.

However, as u approaches the centre of the drop, ¥ = 0, the solution is less well
behaved, since at the origin # = 0 (2.6) is singular if p; () remains non-zero in the limit
u — 0; pp(u) will diverge in this limit and the solution uy(u) will be singular. However,
this singularity can be removed if u; (x) vanishes as u approaches zero, thus
M) _ L du)/du _

. : n
!EI_I’I%I u u=0  dujdu 31—]?6 (1) @n
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according to the 1’Hopital rule. Therefore, in the neighbourhood of the origin (2.6) becomes
Lim p () = 3 (un(u) — g2 — ap (). (2.8)

As the drop becomes increasingly larger, the density at the centre of the drop, g(0),
approaches asymptotically a constant value that is very nearly equal to py; (the density of
a uniform Liquid with the system’s chemical potential p(gis) = i, i.e, o is one of the
solutions of (o) — ¢ = 0; the other is oy) and the larger the drop, the closer g(0) to g,
but when the radins R of the drop is small, then p(0) departs significantly from g; and
becomes smaller. The other boundary condition is the vanishing of u{{x) at » =0, i.e,
#4(0) = 0, so that the solution at # = 0 is bounded.

The crucial point is the calculaiton of the density profile that results as a solution of
the previous boundary value problem (2.6); however, instead of solving (2.6) for the hard-
sphere chemical potential gy (i) (a2 monotonically increasing function of density g(u)), this
equation was transformed into an equation for the packing fraction n = 7 d>g/6 by adopting
the Carnahan-Starling approximation for the hard spheres, i.e.,

pn(n) = ke T(nny + 8y — 97” + 3°)/(1 = 0)°) (2.9)
for the hard-sphere chemical potential, while the hard-sphere pressure is
po(m) =keTo(l+n+n* —*)/(1—n)° (2.10)

where kg is the Boltzmann constant.
Substitution of {2.9) into (2.6) gives,

") = —(2/w)n () — Bi(m)n(u) — B2(n) — Bs(mn(n) (2.11)
for u % 0 and

Ay =3(Bun)/3n = 1/n+ (8 — 2n)/(1 —n)*

Az = 8A;/8n = ~1/n" 4+ (30 — 69}/ — n)°

Bi(m) = Aa(m)fA1(m)
Ba(n) = [Bu — Bun()l/ A(m) (2.125)
Bi(n) = 6aB/mAi(n)

(2.12a)

subject to the boundary conditions
n(0) =0 n(o0) = 1y 7{c0) =0 (2.13)
where 8 = (& T)~.
In the neighbourhood of the centre of the drop, the solution is expanded in power series

about u = 0 [9]

n(w) = n(0) + (/2P (0) + (*/3)5©0) + @ /4P @ + - --. (2.14)
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Substituting (2.14) into (2.11), the coefficients n®}(0), i = 2,3, 4, ... can be expressed in
terms of the unknown value n(0) = g of the packing fraction at the origin « =0,

n®(0) = —1[Bx(q) + g Ba(g)] (2.15a)
2 =0 (2.158)
1®0) = -3 {23.@[:7(2’(0)12 +1P(0) [(é%z—(i’l) +q (@5”—)) + 33(4)]}
N Ju=o dan  Ju=o
(2.15¢)

thus the sclution (2.14) hecomes
n(u) = g + @2/20020) + (1407 (0). (2.16)

For the subsequent calculations all the gquantities and equations are transformed to
dimensionless ‘reduced’ units:

u,*:p,/kBT p*=d3p/kBT T“:T/TG u=r/d

2.17)
y*=d*y/keT o* =pd® o* = a/(ksTd ) = 11.102/T*
thus
£, T*) = (", T*) — g’ (2.18a)
P T = phe*, T —a*e*?/2 (2.18b)

although the asterisks, for simplicity in the expressions, will be suppressed, all the results
will be with respect to the dimensionless variables (2.17).

Initially, the coexisting bulk densities gy and gi, together with the corresponding
spinodal ones p.p and @i are obtained, for various temperatures T, by solving the
simultansous equations

plov) = plai) u(gve) = plaw) (2.19)

for the densities oy and g, and the equations

I-LI(stp) =0 I-"’(lep) =0 (2.20)

for the spinodal densities gvsp and gip. The equilibrium density profile for the planar
interface was obtained by numerically solving the comresponding equation for the free
interface [8]

dun(x)/dx = —[a(x) — w)? — 2e(pn(x) — p)]' (2.21)

for the reduced temperature T* = 0.8 and coexisting densities gy, = 0.0414786,
o = 0.5867316, (see figure 1; the zero of the x-axis was chosen deep in the liguid
phase where gy} = u,{f), also the corresponding surface {ension was calculated from the
formula

1 oo , 2 1 u,‘, ,
Voo = —f [pp(x))*dx = —f pypx)duy (2.22)
o Jo RN



Density functional theory for spherical drops 3308

........... 2

a PR
0 2 4 8 B 10 12 {4 168 19 20 22 24 25 28 0

x

Figure 1. The density profile for flat geometry and 7™ = 0.8.

and it was found to be equal to 0.440094 8.

A one-component two-phase system separated by a planar interface has only one degree
of freedom according to the Gibbs phase rule, usually chosen as the temperature T, while
a systein comprising a spherical drop and bulk vapour has another, which is the parameter
controlling the size of the drop; as such a parameter we choose the density gy of the
homogeneous bulk vapour phase surrounding the drop (this is not the only choice), which
can take any value within the interval (guc, @vsp). The curvature influences not only
the various interfacial quantities but the bulk ones, as well. The bulk vapour phase is
supersaturated, yielding a larger bulk vapour density, gy, than is the case with the planar
geometry (density gy); also the pressures p, and p; of the bulk vapour phase and the
corresponding liquid, respectively, are not equal, in contrast to what happens in the planar
geometry. The equilibrium (at temperature T) between a liquid and its vapour in the
case of a planar dividing surface is achieved by the equality of their chemical potentials
and pressures (relations (2.19)), while for the spherical interface, at equilibrium, only the
chemical potentials are equal and not the pressures (see Laplace equation (1.1)).

3. Pressure tensors

In any homogeneous phase, the pressure is uniform (scalar quantity), hence, in the case of
a two-phase system, in the interior of either homogeneous phase the pressure tensor (the
negative of the microscopic stress tensor) reduces to the bulk pressure p multiplied by the
unit tensor L. However, within the interfacial region the force acting across a unit area is
not the same in different directions since the physical interface is of finite thickness and
the density varies considerably with position within this layer; consequently, the pressure
tensor also varies. The pressure tensor p{r)} consists of an isoiropic part, which is well
defined, and a configurational part, which is not (thus infroducing the arbitrariness into the
definition of p{r) [1,12,13,21]. Recently, Bans and Lovett claimed that this ambiguity
can be eliminated by imposing on p(r) St Venant’s condition so that p(r) is well defined
[23]; Rowlinson, in a subsequent letter [24], argued that this condition implies a vanishing
surface tension; in a counterargument Baus and Lovett [23] commented on the validity of
their argument; however, the matter is still unclear. The drop is in mechanical equilibrium
expressed by the equation (in the abgence of any external field)

Vpr)=0. (3.1}
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For a planar dividing surface (coinciding with the xy-plane) in the interfacial layer p,,,
Py, and pyr vanish, while py,(z) = pyy(z) = pr(z) and p;(2) = Pn(z) = ppa (bulk
pressure), thus the pressure tensor, in this case, is written

p(z) = prz)(e.e. + é}'éy) + pu(2)é;é, (3.2)

where (é;, €y, &) is the orthonormal set in Cartesian coordinates. The tangential component
pr{z) may vary in a complicated way depending only on z (due to symmetry), while the
normal component py(z) remains constant even in the transition layer,

In the case of a spherical interface the pressure tensor p{r), on grounds of symmetry
(see [1] and [26]), will depend only on the radial distance r and consists of a transverse
part pr(r} and a radial one py(r), ie.

p(r) = pu(r)e e, 1+ pr(nl — érér] (3.3)

where | i3 the (3 x 3) unit tensor. Now, the normal component pn(r) is no longer a constant
but varies with the distance from the origin of the drop as determined by (3.1). Substitution
of (3.3) into (3.1) gives the result

Pn(r) = 2/Np1(r) — pN(n)] G4

where the prime denotes the derivative with respect to r. Equation (3.4), on the one hand,
can be integrated from ingide to outside,

“ [pn(r) = pr()]
r

Pa(0) ~ p(00) =2 fﬂ (3.5)

The left-hand side of (3.5) can be considered as one of the possible definitions of the
pressure difference Ap (see below (3.17)). On the other hand, (3.4) can be regarded as a
differential equation for pn{(r), once py(r} is known, i.e.

(r/2dpn(r)/dr + pulr) = pr(0) (3.6)

which, when integrated, yields the result

2 r
i) == f prir)ridry. 3.7
" Jo

The Helmbholtz free energy F as well as the grand potential §2 are independent of the
choice of the position of the dividing surface; as a consequence we have [1]

Ap = py— py = 2¢/R, +1dy /R, (3.84)
C = Aldy/dR,] (3.85)

where R, is the radius of the dividing surface and C the coefficient of the curvature term.
The relation (3.8a) is a generalization of the Laplace equation to allow for higher-order
curvature corrections.

The surface excess density is given by the relation [1]

N, 1 R o0
TR = = ’ﬁ{ fo [p(r) — pulr?dr + fR [o(r) = puslr? dr} (39)
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where N; is the surface number of molecules.
The dividing surfaces are chosen to lie inside the interfacial region and satisfy special
properties concerning interfacial quantities. The first dividing surface is that for which

C(Ry=0 (3.10a)
or, equivalently,

P1— Py =2Y(R}/ R, (3.108)
that is, the one for which Laplace’s equation preserves its form and is called the surface of
tension; its radius is R,. Comparing (3.10a) with (3.86) we see that this dividing surface
minimizes the surface tension.

‘We now proceed to calculate the various interfacial functions {pressure tensor, surface

tension and associated radios) for the model fluid under consideration (2.1, 3).
pr(r) can be identified with minus the grand potential free energy density [26], i.e.

prir) = —wle(r)]. G.11)

If the Euler-Lagrange equation (2.2) is substituted into the grand potential functional
(2.1), the equilibrium grand potential 2y[gy(7r)] results,

Rv[eo(r)] = —f {Ph(Qo(r))+ %Qo(r)fdr’go(r’)w(lr - T'I)]df‘ (3.12)
where gq(r) is the equilibrium density; accordingly (3.11) can be rewritten

1
2r(r) = puleo(m)) + Eeu(r)feo(r’)w(lr —r'pdr’. (3.13)

The pressure tensor components pr(r) and prn(r) are different in the interfacial region;
in the homogeneous bulk vapour phase they are identical and coincide with the bulk vapour
pressure

pr(00) = pn(00) = py = p(pys) (3.14)

as can be verified from (3.6) and (3.13). Also these two components are identical at the
centre of the drop ¥ =0,

P1(0) = pr(0) = pn(0) + 30(0) _[ go(rw(r' dr’ (3.15)

thus, if the drop is large enough, the interior phase possesses a uniform part, pr(0), pn(0)
and p(0) tend asymptotically to the pressure pj = p(gis), which corresponds to that of a
uniform liquid phase of density g, such that u(gn) = (£{0v.); otherwise, the interior phase
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Figure 2. (I) Variation of the pressure at the drop centre, p(o(0)) (a), the normal component
of the pressure tensor at the drop centre, pn(e{0}) (b), and the pressure at density g5 {¢), with
respect to bulk vapour density gy;. (I} Pressure difference Ap against bulk vapour density gys:
plois) — plow) (a) relation (3.17} (B); pn(e(0)) — prlovs) (c) p(@(0)) — plavs) (d).

is non-uniform up to the centre of the drop, pn(0), pr(0) and p(0) depart from p (see
figure 2).

We multiply (2.6) by wy(u) and integrate from a point deep inside the drop to one in
the bulk vapour phase, thus obtaining

[P (2) — (un(@) — 1Y% + 20p (@) Jousice — [2(2) — (1n(@) — 1) + 2aP(Q) Finsice

outside

- f 2 0P au. (3.16)
inside U

The quantity inside the brackets is equal to (2cp(g)) since i (1) vanishes at both limits;
thus (3.16) may be written as

outside

Proside — Pouside = f 2 2y du. 3.17)

inside QI
This is a generalization of the Young-Laplace equation for a spherical dividing surface; the
left-hand side is also considered as another possible definition of the pressure difference
Ap.
Another important physical quantity is the surface tension y(R,; Ap) defined as the
grand potential per unit surface area and depending on the dividing surface. Starting from

its definition the surface tension ¥ (R,; Ap), in reduced units, associated with a dividing
surface with radius R,, is [8]

1 oo
y(Ry; 8p) = — 45 fo [Pn(w) — pv — 3 ()i — pn )]’ du + SRy Ap (3.18q)
¥

- lfm f” 20y dt — ul(u)
= TRz )y L), M “h

- (nﬁ(u) + %ua(u)) (— ﬂb(“))]ug du + %Ry Ap (3.18b)
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on recalling (2.6). Integrating by parts the first and the third terms in the integrand in
(3.18b), we find

1 g 1
y(Ry; AP) = 5= L () S + 3 Ry Ap. (3.18¢)
b4

As radii R, we have chosen R, Re and Ripgy.
The radius R; can be found either by invoking its defining property (3.10a) or by
combining the relations (3.105) and (3.18¢), thus finding

3__2_f” Y
= | ). (3.19)

In addition to R;, another dividing surface is introduced through the requirement
T'(R) = 0, called the equimolar dividing surface [1,6]; its radius, R.. can be found from
(3.9) by setting I'{(R) =0,

e a]
R}= ! f r3fm dr. (3.20)
Pvs — P1s Jo dr

Although the last two dividing surfaces, with radii R; and R, are the ones mainly used,
another dividing surface (with radius Ry, ) is also used, which relies only on the density
profile itself.

The so-called mechanical route to the surface tension is defined through the relations
(3.106) and (3.19), while the thermodynamic route is defined through (3.108), {3.20) and

R, = {3¥0 — [972, — 4voaReAP1*}/ Bp (3.21)

which can be obtained from (3.106) and (1.6) [1,6, 111.
The curvature coefficient C(R) (3.85), on account of (3.17) and (3.18¢), can be wriiten
as
=% R3
C(R) = 8 f w2 (u) (—- - 1) du. (3.22)
3aR i)

ud

4. Results

4.1. Density profiles

The differential equation (2.11, 2.16) with the boundary conditions (2.13) was solved for
varjous values of the bulk vapour density gy (used to label the individual density profiles)
at a fixed temperature for the calculation of the density profile. This equation was solved
numerically for the reduced temperature T* = 0.8 and various bulk vapour densities 7y,
lying in the interval (i, fjvsp), Where 7, is the coexisting vapour density and nyg, is the
corresponding spinodal density. All the relevant 5y, together with the corresponding liquid
densities 1, and the densities n(0) at the centre of the drop, are presented in table 1. The
density profiles resulting as solutions to (2.11) are presented in figure 3; those of the larger
drops represent a stable liquid in equilibrium with a metastable vapour and are similar to
those of a planar interface at the same temperature; from these profiles one can ensure
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the existence of a homogencous phase inside the drop, in agreement with [6], {11], [14]
and {15]. For each profile one can calculate the radius Ry, of a sphere, with the same
centre as that of the drop under consideration, enclosing that part of the interior phase of
the drop characterized by the constancy of its density, that is, it contains the homogeneous
‘liquid’ phase (figure 4); as long as Rpem is non-vanishing the interfacial zone separates two
homogeneous regions, while for Rym = O the spherical droplet contains an inhomogeneous
fluid phase up to its centre, where, now, the local density is an unstable fluid, and the
density profile fails to attain bulk values at the centre (see table 1); however, the symmetry
condition, p1,(0) = 0, still holds.
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Figure 3. Density profiles for various drops labelled by the bulk vapour density gy, at T* = 0.8
for oz = 0.5 (2); 0.055 (b); 0.06 {c); 0.075 (d); 0,095 (£); 0.1166 (f). The wpper and
Iower horizontal lines correspond to the planar interface liquid and vapour reduced coexistence
densities, respectively,

As the density ny of the bulk vapour phase increases (or, equivalently, as the drop
size decreases, see figure 5), the density #(0) at the cenire of the drop initially increases
well above the liquid planar surface value n,, = 0.307211 87, as predicted by the Laplace
equation, reaching a2 maximum value at about gy = 0.059489431 (or, nys = 0.031 148 593
at R, = 9.101 089, Rpax = 12.001 171), then n(0) starts decreasing as #ys approaches fygp
in agreement with [6], [11] and [14]. This behaviour of n(0) is brought out in figure 6; a
similar behaviour is also displayed by the pressure p(0) at the drop centre, and by pn(0),
as was seen earlier in figure 2, whre the different nature of these quantities for small drops
can also be seen. For the larger drops the density n{(0} at the centre is nearly equal to
the liquid density #; implied by bulk thermodynamics, while for the smaller droplets n{(0)
departs considerably from m; (this is brought out by figure 7; see also table 1).

The average drop size can also be expressed by the number of particles Ngqp contained
in the drop,
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Rio
Nyop = 4m f o(ryrtdr 4.1)
0
where R is the distance (radius) from the centre of the drop such that
Q(RIO) =gy + 0‘1(913 - st)- 4.2)

4.2, Pressure tensors

Once the density profiles have been calculated, the pressure tensor componenis py(u) and
pr(u) can be evaluated from the expressions (3.7) and (3.13), respectively, and their profiles
are displayed in figure 8 for a sequence of increasing supersaturation,

For the larger drops (small supersaturations) both components py(z) and pr(x) cioncide
over a distance inside the drop reflecting the existence of a bulk-like liquid phase inside the
drop. However, within the transition region the two components are separated from each
other; the transverse component pr(x) becomes smaller than the normal py{ueXpr(u) <
pn(i)), so that the interface is under tension and pr{x) displays a deep lobe, which for
the smaller supersaturations acquires a negative part. Another characteristic of their profiles
{more pronounced in smail supersaturations) is the existence of a small part of the interface
under compression (py(u) > pn(u)) that disappears in larger supersaturations. In the
outer region of the interface, inside the bulk vapour phase, both tensors join smoothly
together to their common value, which coincides with the bulk vapour pressure py, Le.,
pr{oo) = pn{e) = p,. This overall behaviour of pn(u) and pr(x), for the larger drops,
is in accordance with the MD simulations of Thompson er al [6], Nijmeijer ef al {15] and
the numerical calculations of Falls et al [14]. As the supersaturation is increased further
towards the spinodal density, there is no portion of the interior of these small droplets where
the two components pr{x) and pn(u) coincide, except at the centre of the droplet (where
they coincide by symmetry), because inside these small droplets there is no region that can
be considered as bulk like (2 similar behaviour was found earlier in the density profiles).
As the supersaturation is decreased towards the planar interface limit, the drops become
larger and larger; the pressure difference Ap is reduced so that in the limit of a planar
interface py(x) attains a constant value equal to the bulk pressure, pn(x) = p(ovc) = Phat
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Figure 6. The variation of the density at the origin of  Figure 7. The ratio of the actual density at the drop
the drop, n(0), with the bulk vapour density gys. centre {g(0)) to that predicted by bulk thermodynamics

{o1s) against bulk vapour density (gvs).

while pr(x) varies with distance according to (3.11, 13} and displays a large negative part
in the interfacial region, which is mainly smaller than pn(x) (interface under tension) but
ultimately it joins smoothly with py(x), although on the vapour side of the profile there
exists a small region where pr(x} > pn(x) (interface under compression), (see figure 9);
this behaviour was also found in {14) and [16]-{19] for the Irving—Kirkwood (IX) version
of the pressure tensor but not for the Harasima (H) version.

The surface tension (3.18¢) and the two radii (3.19,21}) of the surface of tension depend
explicitly on the pressure difference Ap (Re and Ruyay do not depend on Ap), which in
non-planar geometries is an ill defined quantity but connected with the chemical potential
through the Gibbs—Duhem relation §p = o (at constant temperature; in planar geometries
Ap is identically zero). In general, Ap can be defined in various ways {6, 14, 15,21]: by
the expression (3.17), by subtracting the bulk pressure p, from that at the origin of the drop
p(0), or subtracting pn(gvs) = pv from pn(0), or plow) = p. from p(oi) = pr (figure 2).
However, for large drops, the pressures p(gis), p(0), and pn(0) are equal; as a consequence,
the corresponding Ap-curves coincide for these drops and do not deviate considerably when
the supersaturation is still small, however the deviation is significant for the smaller drops
(high supersaturation). The pressure p(r) (2.185) is a monotonic function of density and the
pressure py of the bulk phase does not vary significantly, so the corresponding Ap-curves
exhibit the same behaviowr as those of p(0), pn(0), and p(oi) = p1, tespectively.

The density gys increases from gy to Quep; 50 does gis (both are solutions of the
equation j{g) — p = 0), and p; is an increasing function of gy;; the other two quantities
Pn{0) and p(0) attain a maximum value, which refiects the non-nonotonic behaviour of
2(0) (see figure 6). For large drops (when gy is close to gw) o1, pn(0), and p(0) are
equal or nearly equal, while for smaller drops they depart and pn(0) > p(0) because
pr{0) = pn(0) = p(0) + %(,u, — 1£(0)) and g > p(e(0)) for real densities.

In the integral expression (3.17) for Ap, the integrand vanishes inside the bulk vapour
(exterior) phase, since, in this region, g1 (x) is zero identically, thus the contribution to the
integral in (3.17) originates solely from the intericr and interfacial regions and this causes
Ap to increase (the integrand is positive and the density profile is steeper for the smaller
drops).

The four definitions for Ap are independent from each other in the sense that the
integral definition monitors the behaviour of the derivative of the hard-sphere chemical
potential inside the drop and in the interface, while the other three extract Ap either from
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Figure 8, (a) (I) Pressure tensor components pn(z} and pr{u) apainst reduced distance
from the centre of the drop for reduced density gy = 0.05(nys = 0.026 18). (I} Pressure
tensar components for gys = 0.06(p; = 0.031416). () (I) Pressure tensor components for
Qus = 0.085(nys = 0.0445). (II) Pressure tensor components for gys = 0.1(ny; = 0.052 36).

the pressure itself or the pressure tensor in the ‘bulk’ phases.

For the calculation of ¥ (R,; Ap) and R, Ap is chosen to be given by (3.17), because
this expression depends on the global behaviour of the system and not on specific points;
this is also valid for small drops, where the interior phase is no longer bulk like and does
not possess a platean and the density p(0) deviates significantly from the p, implied by
bulk thermodynamics {which assumes 2 bulk-like interior phase). As the supersaturation
is increased from the planar vapour value (i.e., starting from very large drops) the tension
increases slowly from its planar value up to a maximum value (see table 1 and figure 10),
which occurs around R, = 8 when R, is taken to be R; or Ryax, and R, = 6 when R, is
taken to be R; later it decreases rapidly as the size of the drop decreases, in agreement with
simulation [6] and other numerical calculations [11, 14, 20]; this non-monotonic behaviour in
¥(R,; Ap) was observed earlier only in [10]. The initial increasing tendency of y(R,; Ap)
is similar to that of the density at the centre of the drop, o(0), which also attains a maximum
value (in this range of densities, the drop formed is large); this increase in density implies
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accumulation of particles in the neighbourhood of the centre of the drop, resulting in
increasing surface tension. For the smaller drops, where the density is non-uniform up
to the centre, the value of the surface tension does not deviate very much from that of y,
and, as long as the overall behaviour of tensions is the same, .y can be used as a measure
of the surface tension of drops of any size.

The asymptotic behaviour of Ap is described by the formula (see [6])

lim Ap =2¥x/R. (4.3)
R.—o00

and this appears in figure 11 together with the correct form of Laplace eguation (1.2}
calculated throngh the mechanical route. For small drops the asymptotic form (4.4) deviates
from the correct Laplace equation, giving larger Ap, while for the larger drops both formulae
give nearly the same results (see [6] and [14]).
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Fignre iI. The pressure difference as a function Figure 12. Tolman's length & against equimolar radivs
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Laplace equation (full line) and from the asymptotic

form (dashed line).

In figure 12 we plot Tolman's length § = R, — R; (see table 1, calculated through the
mechanical route (3.10b,19)) as a function of the equimolar dividing radius R.. Tolman's
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length & is negative (an expected resnlt since the surface tension y; is greater than yu)
and strongly drop dependent, thus the surface of tension is on the gas side of the equimolar
surface; a similar behaviour of § was observed in [10] and [13], while in [6}, [11] and [14] 3
was found to be is positive and tend to zero as R, — oo. Nijmeijer et al [15] have done MD
simulations on a similar system at T* = kg T /e = 0.9, finding that the data for § is scattered
around zero, and concluded that |8*| < 0.7; this result was also verified by Blokhuis and
Bedeaux [21]. In the limit R. — oo, for the transition from the spherical interface to the
planar, one expects to find § negative since the liquid—vapour interface (fgure 1) is not
symmetric (the vapour branch of the density profile is steeper than the liquid branch) thus
Ze ¥ 75 ([31]; see (3.19) and (3.20); for planar interfaces see [17], [18] and [22]).

The distribution of matter in the interface can be better described by adsorption (3.9} as
a function of the distance from the centre of the drop (figure 13) for various bulk vapour
densities 9y;. For small distances from the centre of the drop adsorption varies slowly, in
the interfacial region it varies significantly, but for larger distances, within the bulk phase,
it becomes negative and varies slowly. The respective adorption curves cut the radius axis
at a point identical to R,.
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Figure 13. Adsorption F{R) as a function of the Figure 14. The curvature term C(R) as a function
distance from the origin of the drop for various bulk  of the distance from the origin of the drop for various
vapour densities gyt 0.05 (4); 0.052 (b); 0.055 (¢); bulk vapour densities gy;; 0.1 {2); 0.085 (b); 0.065 (¢},
0.065 (d); 0.085 (). 0.052 {(d); 0.05 (¢).

In figure 14 we present the plots of the curvature term C(R) (see (3.86)) for various
bulk vapour densities; each curve cuts the radius axis at a point that coincides with R; (the
radius of the surface of tension (3.19)).

5. Conclusions

We have studied the interfacial properties and stresses of liquid drops of various radii
embedded in a vapour background using Sullivan’s model at reduced temperature 7% = 0.8,
The advantage of this model over other models is that it can be described by a non-linear
differential equation instead of an integral equation; this was solved numerically for various
values of the bulk vapour density gv. The nnmerical results of this mean field theory are
compared with the numerical and MD simulations for other model fluids [6, 10, 11, 13-15,21]
expecting only qualitative agreement.

As gy; increases from g.. towards gy, the drop size decreases; initially, the distribution
of particles around the centre of the drop is constant, implying the existence of a
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homogeneous phase inside the drop (as required by bulk thermodynamics), but this
disappears gradually as the drop size decreases further so that the interior phase becomes
non-uniform up to the centre of the drop; however, parallel to this behaviour of the interior
phase, the density at the drop centre initially increases, but later decreases, and departs
increasingly from the density g;; predicted by bulk thermodynamics. These results are in
qualitative agreement with the numerical and MD calculations referred to above.

A striking result of this mean field theory calculation is the non-monotonic behaviour
of the surface tension as gy, increases, in contrast to the monotonic behaviour shown, in
general, by (R) (the only exception is in [10]). Another quantity related to the surface
tension is Tolman’s length 8, which has caused much debate. The § obtained by mean field
theory is negative and it seems to be such in the planar interface limit R, — ©o. In the two
main routes to the surface tension, the pressure difference Ap is involved; this quantity,
although is independent of the dividing surface, displays a significant drawback, it is not
uniquely defined in the sense that it can be defined in various ways independently and their
results are identical only for large drops.

In conclusion, some of our results agree, qualitatively as expected, with those of other
medels and approximations, but some others do not, e.g., the surface tension, Tolman’s
length, Ap, pressure tensor; more MD simulations and experiments on real systems could
resolve some of the problems.
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